Next Article in Journal
Optimal Task Allocation in Wireless Sensor Networks by Means of Social Network Optimization
Previous Article in Journal
On the Normalized Laplacian and the Number of Spanning Trees of Linear Heptagonal Networks
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence and Unique Coupled Solution in Sb-Metric Spaces by Rational Contraction with Application

by
Jelena Vujaković
1,
Gajula Naveen Venkata Kishore
2,
Konduru Pandu Ranga Rao
3,
Stojan Radenović
4,* and
Shaik Sadik
5
1
Faculty of Sciences and Mathematics, University of Priština, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia
2
Department of Mathematics, SRKR Engineering College, Bhimavaram, West Godavari 534 204, India
3
Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India
4
Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
5
Department of Mathematics, Sir C R R College of Engineering, Eluru, West Godhavari 534 007, India
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(4), 313; https://doi.org/10.3390/math7040313
Submission received: 30 January 2019 / Revised: 3 March 2019 / Accepted: 14 March 2019 / Published: 28 March 2019

Abstract

:
In this paper, we prove a unique common coupled fixed point theorem for two pairs of w-compatible mappings in S b -metric spaces. We also furnish an example to support our main result.

1. Introduction

In 2012, Sedghi et al. [1] introduced the notion of S-metric space and proved several results. Some other authors also worked on this (e.g., [2,3,4,5,6]). On the other hand, the concept of b-metric space was introduced by Bakhtin [7] and Czerwik [8] (see also [9,10,11]).
Recently, Sedghi et al. [1] defined S b -metric spaces using the concepts of S and b-metric spaces and proved common fixed point theorem for four maps in S b -metric spaces (see also [12]).
Bhaskar and Lakshmikantham [13] introduced the notion of coupled fixed point and proved some coupled fixed point results as well.
The aim of this paper is to prove a unique common coupled fixed point theorem for four mappings in S b -metric spaces. Throughout this paper, R + and N denote the set of all non-negative real numbers and positive integers, respectively.
First, we recall some definitions, lemmas and examples.
Definition 1.
Ref. [4] Let X be a nonempty set. A S-metric on X is a function S : X 3 R + that satisfies the following conditions for each x , y , z , a X :
(S1) 
S ( x , y , z ) = 0 if and only if x = y = z ,
(S2) 
S ( x , y , z ) S ( x , x , a ) + S ( y , y , a ) + S ( z , z , a ) .
Then, the pair ( X , S ) is called a S-metric space.
Definition 2.
([8]) Let X be a nonempty set and s 1 be a given real number. A function d : X × X R + is called a b-metric if the following axioms are satisfied for all x , y , z X :
(b1) 
d ( x , y ) = 0 if and only if x = y ;
(b2) 
d ( x , y ) = d ( y , x ) ; and
(b3) 
d ( x , y ) s [ d ( x , z ) + d ( z , y ) ] .
The pair ( X , d ) is called a b b-metric space.
Definition 3.
([1]) Let X be a nonempty set and b 1 be a given real number. Suppose that a mapping S b : X 3 R + is a function satisfying the following properties:
(Sb1)
S b ( x , y , z ) = 0 if and only if x = y = z ; and
(Sb2)
S b ( x , y , z ) b ( S b ( x , x , a ) + S b ( y , y , a ) + S b ( z , z , a ) ) for all x , y , z , a X .
Then, the function S b is called a S b -metric on X and the pair ( X , S b ) is called a S b -metric space.
Remark 1.
([1]) It should be noted that the class of S b -metric spaces is effectively larger than that of S-metric spaces. Indeed, each S-metric space is a S b -metric space with b = 1 .
The following example shows that a S b -metric on X need not be a S-metric on X.
Example 1.
([1]) Let ( X , S b ) be a S b -metric space and S b ( x , y , z ) = S p ( x , y , z ) , where p > 1 is a real number. Note that S b is a S b -metric with b = 2 2 ( p 1 ) . In addition, ( X , S b ) is not necessarily a S-metric space.
Definition 4.
([1]) Let ( X , S b ) be a S b -metric space. Then, for x X , r > 0 , we defined the open ball B S b ( x , r ) and closed ball B S b [ x , r ] with center x and radius r as follows, respectively:
B S b ( x , r ) = { y X : S b ( y , y , x ) < r } , B S b [ x , r ] = { y X : S b ( y , y , x ) r } .
Lemma 1.
([1]) In a S b -metric space, we have
S b ( x , x , y ) b S b ( y , y , x )
and
S b ( y , y , x ) b S b ( x , x , y ) .
Lemma 2.
([1]) In a S b -metric space we have
S b ( x , x , z ) 2 b S b ( x , x , y ) + b 2 S b ( y , y , z ) .
Definition 5.
([1]) Let ( X , S b ) be a S b -metric space. A sequence { x n } in X is said to be:
(1) 
S b -Cauchy sequence if, for each ϵ > 0 , there exists n 0 N such that S b ( x n , x n , x m ) < ϵ for each m , n n 0 .
(2) 
S b -convergent to a point x X if, for each ϵ > 0 , there exists a positive integer n 0 such that S b ( x n , x n , x ) < ϵ or S b ( x , , x , x n ) < ϵ for all n n 0 and we denote that by lim n x n = x .
Definition 6.
([1]) A S b -metric space ( X , S b ) is called complete if every S b -Cauchy sequence is S b -convergent in X.
Lemma 3.
([14]) If ( X , S b ) is a S b -metric space with b 1 and { x n } is a S b -convergent to x, then for all y X , we have
(i) 
1 2 b S b ( y , x , x ) lim n inf S b ( y , y , x n ) lim n sup S b ( y , y , x n ) 2 b S b ( y , y , x ) ; and
(ii) 
1 b 2 S b ( x , x , y ) lim n inf S b ( x n , x n , y ) lim n sup S b ( x n , x n , y ) b 2 S b ( x , x , y ) .
In particular, if x = y , then we have lim n S b ( x n , x n , y ) = 0 .
Definition 7.
([13]) Let X be a nonempty set. An element ( x , y ) X × X is called a coupled fixed point of a mapping F : X × X X if x = F ( x , y ) and y = F ( y , x ) .
Definition 8.
([15]) Let X be a nonempty set. An element ( x , y ) X × X is called:
(i) 
a coupled coincident point of mappings F : X × X X and f : X X if f ( x ) = F ( x , y ) and f ( y ) = F ( y , x ) ; and
(ii) 
a common coupled fixed point of mappings F : X × X X and f : X X if x = f ( x ) = F ( x , y ) and y = f ( y ) = F ( y , x ) .
Definition 9.
([16]) Let X be a nonempty set and F : X × X X and f : X X . The { F , f } is said to be w-compatible pair if f ( F ( x , y ) ) = F ( f ( x ) , f ( y ) ) and f ( F ( y , x ) ) = F ( f ( y ) , f ( x ) ) whenever there exist x , y X with f ( x ) = F ( x , y ) and f ( y ) = F ( y , x ) .
For more details of other generalized metric spaces as well as on some rational contraction, see [9,17,18,19].
Now, we give our main result.

2. Main Results

Let Φ denote the class of all functions ϕ : [ 0 , ) [ 0 , ) such that ϕ is a non-decreasing, continuous, ϕ ( t ) < t 4 b 4 for all t > 0 and ϕ ( 0 ) = 0 .
Theorem 1.
Let ( X , S b ) be a S b -metric space. Suppose that A , B : X × X X and P , Q : X X satisfy:
(1) 
A ( X × X ) Q ( X ) , B ( X × X ) P ( X ) ;
(2) 
{ A , P } and { B , Q } are w-compatible pairs;
(3) 
one of P ( X ) or Q ( X ) is S b -complete subspace of X; and
(4) 
2 b 5 S b ( A ( x , y ) , A ( x , y ) , B ( u , v ) )
ϕ max S b ( P ( x ) , P ( x ) , Q ( u ) ) , S b ( P ( y ) , P ( y ) , Q ( v ) ) , S b ( A ( x , y ) , A ( x , y ) , P ( x ) ) , S b ( A ( y , x ) , A ( y , x ) , P ( y ) ) , S b ( B ( u , v ) , B ( u , v ) , Q ( u ) ) , S b ( B ( v , u ) , B ( v , u ) , Q ( v ) ) , S b ( A ( x , y ) , A ( x , y ) , Q ( u ) ) S b ( B ( u , v ) , B ( u , v ) , P ( x ) ) 1 + S b ( P ( x ) , P ( x ) , Q ( u ) ) , S b ( A ( y , x ) , A ( y , x ) , Q ( v ) ) S b ( B ( v , u ) , B ( v , u ) , P ( y ) ) 1 + S b ( P ( y ) , P ( y ) , Q ( v ) ) ,
for all x , y , u , v X , ϕ Φ .
Then, A , B , P and Q have a unique common coupled fixed point in X × X .
Proof of Theorem.
Let x 0 , y 0 X . From Equation (1), we can construct the sequences { x n } , { y n } , { z n } and { w n } such that
A ( x 2 n , y 2 n ) = Q ( x 2 n + 1 ) = z 2 n , A ( y 2 n , x 2 n ) = Q ( y 2 n + 1 ) = w 2 n , B ( x 2 n + 1 , y 2 n + 1 ) = P ( x 2 n + 2 ) = z 2 n + 1 , B ( y 2 n + 1 , x 2 n + 1 ) = P ( y 2 n + 2 ) = w 2 n + 1 , n = 0 , 1 , 2 , .
Case (i). Suppose z 2 m = z 2 m + 1 and w 2 m = w 2 m + 1 for some m. Assume that z 2 m + 1 z 2 m + 2 or w 2 m + 1 w 2 m + 2 .
From Equation (4), we have
S b ( z 2 m + 2 , z 2 m + 2 , z 2 m + 1 ) 2 b 5 S b ( A ( x 2 m + 2 , y 2 m + 2 ) , A ( x 2 m + 2 , y 2 m + 2 ) , B ( x 2 m + 1 , y 2 m + 1 ) ) ϕ max S b ( P ( x 2 m + 2 ) , P ( x 2 m + 2 ) , Q ( x 2 m + 1 ) ) , S b ( P ( y 2 m + 2 ) , P ( y 2 m + 2 ) , Q ( y 2 m + 1 ) ) , S b ( A ( x 2 m + 2 , y 2 m + 2 ) , A ( x 2 m + 2 , y 2 m + 2 ) , P ( x 2 m + 2 ) ) , S b ( A ( y 2 m + 2 , x 2 m + 2 ) , A ( y 2 m + 2 , x 2 m + 2 ) , P ( y 2 m + 2 ) ) , S b ( B ( x 2 m + 1 , y 2 m + 1 ) , B ( x 2 m + 1 , y 2 m + 1 ) , Q ( x 2 m + 1 ) ) , S b ( B ( y 2 m + 1 , x 2 m + 1 ) , B ( y 2 m + 1 , x 2 m + 1 ) , Q ( y 2 m + 1 ) ) , S b ( A ( x 2 m + 2 , y 2 m + 2 ) , A ( x 2 m + 2 , y 2 m + 2 ) , Q ( x 2 m + 1 ) ) S b ( B ( x 2 m + 1 , y 2 m + 1 ) , B ( x 2 m + 1 , y 2 m + 1 ) , P ( x 2 m + 2 ) ) 1 + S b ( P ( x 2 m + 2 ) , P ( x 2 m + 2 ) , Q ( x 2 m + 1 ) ) S b ( A ( y 2 m + 2 , x 2 m + 2 ) , A ( y 2 m + 2 , x 2 m + 2 ) , Q ( y 2 m + 1 ) ) S b ( B ( y 2 m + 1 , x 2 m + 1 ) , B ( y 2 m + 1 , x 2 m + 1 ) , P ( y 2 m + 2 ) ) 1 + S b ( P ( y 2 m + 2 ) , P ( y 2 m + 2 ) , Q ( y 2 m + 1 ) ) = ϕ max S b ( z 2 m + 1 , z 2 m + 1 , z 2 m ) , S b ( w 2 m + 1 , w 2 m + 1 , w 2 m ) , S b ( z 2 m + 2 , z 2 m + 2 , z 2 m + 1 ) , S b ( w 2 m + 2 , w 2 m + 2 , w 2 m + 1 ) , S b ( z 2 m + 1 , z 2 m + 1 , z 2 m ) , S b ( w 2 m + 1 , w 2 m + 1 , w 2 m ) , S b ( z 2 m + 2 , z 2 m + 2 , z 2 m + 1 ) S b ( z 2 m + 1 , z 2 m + 1 , z 2 m ) 1 + S b ( z 2 m + 1 , z 2 m + 1 , z 2 m ) , S b ( w 2 m + 2 , w 2 m + 2 , w 2 m + 1 ) S b ( w 2 m + 1 , w 2 m + 1 , w 2 m ) 1 + S b ( w 2 m + 1 , w 2 m + 1 , w 2 m ) = ϕ max 0 , 0 , S b ( z 2 m + 2 , z 2 m + 2 , z 2 m + 1 ) , S b ( w 2 m + 2 , w 2 m + 2 , w 2 m + 1 ) , 0 , 0 , 0 , 0 = ϕ max S b ( z 2 m + 2 , z 2 m + 2 , z 2 m + 1 ) , S b ( w 2 m + 2 , w 2 m + 2 , w 2 m + 1 ) .
Similarly, we can prove that
S b ( w 2 m + 2 , w 2 m + 2 , w 2 m + 1 ) ϕ max S b ( z 2 m + 2 , z 2 m + 2 , z 2 m + 1 ) , S b ( w 2 m + 2 , w 2 m + 2 , w 2 m + 1 ) .
It follows that
max S b ( z 2 m + 2 , z 2 m + 2 , z 2 m + 1 ) , S b ( w 2 m + 2 , w 2 m + 2 , w 2 m + 1 ) ϕ max S b ( z 2 m + 2 , z 2 m + 2 , z 2 m + 1 ) , S b ( w 2 m + 2 , w 2 m + 2 , w 2 m + 1 ) .
Hence, z 2 m + 2 = z 2 m + 1 and w 2 m + 2 = w 2 m + 1 .
Continuing in this process, we can conclude that z 2 m + k = z 2 m and w 2 m + k = w 2 m for all k 0 .
It follows that { z m } and { w m } are Cauchy sequences.
Case (ii). Assume that z 2 n z 2 n + 1 or w 2 n w 2 n + 1 for all n.
Put S n = max S b ( z n + 1 , z n + 1 , z n ) , S b ( w n + 1 , w n + 1 , w n ) .
From Equation (4), we have
S b ( z 2 n + 2 , z 2 n + 2 , z 2 n + 1 ) 2 b 5 S b ( A ( x 2 n + 2 , y 2 n + 2 ) , A ( x 2 n + 2 , y 2 n + 2 ) , B ( x 2 n + 1 , y 2 n + 1 ) ) ϕ max S b ( P ( x 2 n + 2 ) , P ( x 2 n + 2 ) , Q ( x 2 n + 1 ) ) , S b ( P ( y 2 n + 2 ) , P ( y 2 n + 2 ) , Q ( y 2 n + 1 ) ) , S b ( A ( x 2 n + 2 , y 2 n + 2 ) , A ( x 2 n + 2 , y 2 n + 2 ) , P ( x 2 n + 2 ) ) , S b ( A ( y 2 n + 2 , x 2 n + 2 ) , A ( y 2 n + 2 , x 2 n + 2 ) , P ( y 2 n + 2 ) ) , S b ( B ( x 2 n + 1 , y 2 n + 1 ) , B ( x 2 n + 1 , y 2 n + 1 ) , Q ( x 2 n + 1 ) ) , S b ( B ( y 2 n + 1 , x 2 n + 1 ) , B ( y 2 n + 1 , x 2 n + 1 ) , Q ( y 2 n + 1 ) ) , S b ( A ( x 2 n + 2 , y 2 n + 2 ) , A ( x 2 n + 2 , y 2 n + 2 ) , Q ( x 2 n + 1 ) ) S b ( B ( x 2 n + 1 , y 2 n + 1 ) , B ( x 2 n + 1 , y 2 n + 1 ) , P ( x 2 n + 2 ) ) 1 + S b ( P ( x 2 n + 2 ) , P ( x 2 n + 2 ) , Q ( x 2 n + 1 ) ) , S b ( A ( y 2 n + 2 , x 2 n + 2 ) , A ( y 2 n + 2 , x 2 n + 2 ) , Q ( y 2 n + 1 ) ) S b ( B ( y 2 n + 1 , x 2 n + 1 ) , B ( y 2 n + 1 , x 2 n + 1 ) , P ( y 2 n + 2 ) ) 1 + S b ( P ( y 2 n + 2 ) , P ( y 2 n + 2 ) , Q ( y 2 n + 1 ) ) = ϕ max S b ( z 2 n + 1 , z 2 n + 1 , z 2 n ) , S b ( w 2 n + 1 , w 2 n + 1 , w 2 n ) , S b ( z 2 n + 2 , z 2 n + 2 , z 2 n + 1 ) , S b ( w 2 n + 2 , w 2 n + 2 , w 2 n + 1 ) , S b ( z 2 n + 1 , z 2 n + 1 , z 2 n ) , S b ( w 2 n + 1 , w 2 n + 1 , w 2 n ) , S b ( z 2 n + 2 , z 2 n + 2 , z 2 n ) S b ( z 2 n + 1 , z 2 n + 1 , z 2 n + 1 ) 1 + S b ( z 2 n + 1 , z 2 n + 1 , z 2 n ) , S b ( w 2 n + 2 , w 2 n + 2 , w 2 n ) S b ( w 2 n + 1 , w 2 n + 1 , w 2 n + 1 ) 1 + S b ( w 2 n + 1 , w 2 n + 1 , w 2 n ) = ϕ max S b ( z 2 n + 1 , z 2 n + 1 , z 2 n ) , S b ( z 2 n + 2 , z 2 n + 2 , z 2 n + 1 ) , S b ( w 2 n + 1 , w 2 n + 1 , w 2 n ) , S b ( w 2 n + 2 , w 2 n + 2 , w 2 n + 1 ) = ϕ max S 2 n + 1 , S 2 n .
Similarly, we can prove
S b ( w 2 n + 2 , w 2 n + 2 , w 2 n + 1 ) ϕ max S 2 n + 1 , S 2 n .
Thus,
S 2 n + 1 ϕ ( max { S 2 n , S 2 n + 1 } ) .
If S 2 n + 1 is maximum, then we get contradiction so that S 2 n is maximum.
Thus,
S 2 n + 1 ϕ ( S 2 n ) < S 2 n .
Similarly, we can conclude that S 2 n < S 2 n 1 .
It is clear that { S n } is a non-increasing sequence of non-negative real numbers and must converge to a real number, say r 0 .
Suppose r > 0 . Letting n , in Equation (1), we have r ϕ ( r ) r .
It is a contradiction. Hence, r = 0 .
Thus,
lim n S b ( z n + 1 , z n + 1 , z n ) = 0
and
lim n S b ( w n + 1 , w n + 1 , w n ) = 0 .
Now, we prove that { z 2 n } and { w 2 n } are Cauchy sequences in ( X , S b ) . On teh contrary, we suppose that { z 2 n } or { w 2 n } is not Cauchy. Then, there exist ϵ > 0 and monotonically increasing sequence of natural numbers { 2 m k } and { 2 n k } such that for n k > m k
max { S b ( z 2 m k , z 2 m k , z 2 n k ) , S b ( w 2 m k , w 2 m k , w 2 n k ) } ϵ
and
max { S b ( z 2 m k , z 2 m k , z 2 n k 2 ) , S b ( w 2 m k , w 2 m k , w 2 n k 2 ) } < ϵ .
From Equations (4) and (5), we have
ϵ max { S b ( z 2 m k , z 2 m k , z 2 n k ) , S b ( w 2 m k , w 2 m k , w 2 n k ) } 2 b max { S b ( z 2 m k , z 2 m k , z 2 m k + 2 ) , S b ( w 2 m k , w 2 m k , w 2 m k + 2 ) } + b max { S b ( z 2 n k , z 2 n k , z 2 m k + 2 ) , S b ( w 2 n k + 2 , w 2 n k , w 2 m k + 2 ) } 2 b 2 b max { S b ( z 2 m k , z 2 m k , z 2 m k + 1 ) , S b ( w 2 m k , w 2 m k , w 2 m k + 1 ) } + 2 b b max { S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 m k + 1 ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 m k + 1 ) } + b 2 b max { S b ( z 2 n k , z 2 n k , z 2 n k + 1 ) , S b ( w 2 n k , w 2 n k , w 2 n k + 1 ) } + b b max { S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 n k + 1 ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 n k + 1 ) } 4 b 3 max { S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 m k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 m k ) } + 2 b 2 max { S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 m k + 1 ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 m k + 1 ) } + 2 b 3 max { S b ( z 2 n k + 1 , z 2 n k + 1 , z 2 n k ) , S b ( w 2 n k + 1 , w 2 n k + 1 , w 2 n k ) } + b 2 max { S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 n k + 1 ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 n k + 1 ) } .
Now, from Equation (4), we have
2 b 5 S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 n k + 1 )    ϕ max S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 n k ) , S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 m k + 1 ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 m k + 1 ) , S b ( z 2 n k + 1 , z 2 n k + 1 , z 2 n k ) , S b ( w 2 n k + 1 , w 2 n k + 1 , w 2 n k ) , S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 n k ) S b ( z 2 n k + 1 , z 2 n k + 1 , z 2 m k + 1 ) 1 + S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 n k ) S b ( w 2 n k + 1 , w 2 n k + 1 , w 2 m k + 1 ) 1 + S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 n k ) .
Similarly,
2 b 5 S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 n k + 1 ) ϕ max S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 n k ) , S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 m k + 1 ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 m k + 1 ) , S b ( z 2 n k + 1 , z 2 n k + 1 , z 2 n k ) , S b ( w 2 n k + 1 , w 2 n k + 1 , w 2 n k ) , S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 n k ) S b ( z 2 n k + 1 , z 2 n k + 1 , z 2 m k + 1 ) 1 + S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 n k ) S b ( w 2 n k + 1 , w 2 n k + 1 , w 2 m k + 1 ) 1 + S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 n k ) .
Thus,
2 b 5 max S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 n k + 1 ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 n k + 1 )
ϕ max S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 n k ) , S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 m k + 1 ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 m k + 1 ) , S b ( z 2 n k + 1 , z 2 n k + 1 , z 2 n k ) , S b ( w 2 n k + 1 , w 2 n k + 1 , w 2 n k ) , S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 n k ) S b ( z 2 n k + 1 , z 2 n k + 1 , z 2 m k + 1 ) 1 + S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 n k ) S b ( w 2 n k + 1 , w 2 n k + 1 , w 2 m k + 1 ) 1 + S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 n k ) .
However,
max { S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 n k ) } 2 b max { S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 m k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 m k ) } + b max { S b ( z 2 n k , z 2 n k , z 2 m k ) , S b ( w 2 n k , w 2 n k , w 2 m k ) } 2 b max { S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 m k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 m k ) } + b 2 max { S b ( z 2 m k , z 2 m k , z 2 n k ) , S b ( w 2 m k , w 2 m k , w 2 n k ) } 2 b max { S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 m k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 m k ) } + b 2 2 b max { S b ( z 2 m k , z 2 m k , z 2 n k 2 ) , S b ( w 2 m k , w 2 m k , w 2 n k 2 ) } + b 2 b max { S b ( z 2 n k , z 2 n k , z 2 n k 2 ) , S b ( w 2 n k , w 2 n k , w 2 n k 2 ) } < 2 b max { S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 m k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 m k ) } + 2 b 3 ϵ + b 3 2 b max { S b ( z 2 n k , z 2 n k , z 2 n k 1 ) , S b ( w 2 n k , w 2 n k , w 2 n k 1 ) } + b 3 b max { S b ( z 2 n k 2 , z 2 n k 2 , z 2 n k 1 ) , S b ( w 2 n k 2 , w 2 n k 2 , w 2 n k 1 ) } 2 b max { S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 m k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 m k ) } + 2 b 3 ϵ + 2 b 4 max { S b ( z 2 n k , z 2 n k , z 2 n k 1 ) , S b ( w 2 n k , w 2 n k , w 2 n k 1 ) } + b 5 max { S b ( z 2 n k 1 , z 2 n k 1 , z 2 n k 2 ) , S b ( w 2 n k 1 , w 2 n k 1 , w 2 n k 2 ) } .
Letting k , we have
lim k max { S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) , S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 n k ) } 2 b 3 ϵ .
In addition,
lim k S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 n k ) S b ( z 2 n k + 1 , z 2 n k + 1 , z 2 m k + 1 ) 1 + S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) lim k 1 1 + S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) [ 2 b S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 m k + 1 ) + b S b ( z 2 n k , z 2 n k , z 2 m k + 1 ) ] · [ 2 b S b ( z 2 n k + 1 , z 2 n k + 1 , z 2 n k ) + b S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) ] lim k b 3 S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) 1 + S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) lim k b 3 S b ( z 2 m k + 1 , z 2 m k + 1 , z 2 n k ) 2 b 6 ϵ .
Similarly,
lim k S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 n k ) S b ( w 2 n k + 1 , w 2 n k + 1 , w 2 m k + 1 ) 1 + S b ( w 2 m k + 1 , w 2 m k + 1 , w 2 n k ) 2 b 6 ϵ .
Letting k in Equation (7), we have
lim k max { S b ( z 2 m k + 2 , z 2 m k + 2 , z 2 n k + 1 ) , S b ( w 2 m k + 2 , w 2 m k + 2 , w 2 n k + 1 ) } 1 2 b 5 ϕ max { 2 b 3 ϵ , 0 , 0 , 0 , 0 , 2 b 6 ϵ , 2 b 6 ϵ } = 1 2 b 5 ϕ ( 2 b 6 ϵ ) .
Now, letting n in Equation (6), from Equations (2), (3) and (8), we have
ϵ 0 + 0 + 0 + b 2 1 2 b 5 ϕ ( 2 b 6 ϵ ) < ϵ .
It is a contradiction. Hence, { z 2 n } and { w 2 n } are S b -Cauchy sequences in ( X , S b ) .
In addition,
max { S b ( z 2 n + 1 , z 2 n + 1 , z 2 m + 1 ) , S b ( w 2 n + 1 , w 2 n + 1 , w 2 m + 1 ) }       2 b max { S b ( z 2 n + 1 , z 2 n + 1 , z 2 n ) , S b ( w 2 n + 1 , w 2 n + 1 , w 2 n ) }       + b max { S b ( z 2 m + 1 , z 2 m + 1 , z 2 n ) , S b ( w 2 m + 1 , w 2 m + 1 , w 2 n ) }       2 b max { S b ( z 2 n + 1 , z 2 n + 1 , z 2 n ) , S b ( w 2 n + 1 , w 2 n + 1 , w 2 n ) }     + 2 b 2 max { S b ( z 2 m + 1 , z 2 m + 1 , z 2 m ) , S b ( w 2 m + 1 , w 2 m + 1 , w 2 m ) }       + b 2 max { S b ( z 2 n , z 2 n , z 2 m ) , S b ( w 2 n , w 2 n , w 2 m ) } .
Since { z 2 n } and { w 2 n } are S b -Cauchy sequences, from Equations (2) and (3), it follows that { z 2 n + 1 } and { w 2 n + 1 } are also S b -Cauchy sequences in ( X , S b ) . Hence, { z n } and { w n } are S b -Cauchy sequences in ( X , S b ) .
Suppose P ( X ) is a S b -complete subspace of ( X , S b ) . Then, the sequences { z n } and { w n } converge to α and β in P ( X ) . Thus, there exist a and b in P ( X ) such that
lim n z n = α = P ( a ) a n d lim n w n = β = P ( b ) .
Now, we have to prove that A ( a , b ) = α and A ( b , a ) = β . On the contrary, suppose that A ( a , b ) α or A ( b , a ) β .
From Equation (4) and Lemma 3, we obtain that
1 2 b S b ( A ( a , b ) , A ( a , b ) , α )    lim n inf 2 b 5 S b ( A ( a , b ) , A ( a , b ) , B ( x 2 n + 1 , y 2 n + 1 ) )    lim n inf ϕ max S b ( P ( a ) , P ( a ) , Q ( x 2 n + 1 ) ) , S b ( P ( b ) , P ( b ) , Q ( y 2 n + 1 ) ) , S b ( A ( a , b ) , A ( a , b ) , P ( a ) ) , S b ( A ( b , a ) , A ( b , a ) , P ( b ) ) , S b ( B ( x 2 n + 1 , y 2 n + 1 ) , B ( x 2 n + 1 , y 2 n + 1 ) , Q ( x 2 n + 1 ) ) , S b ( B ( y 2 n + 1 , x 2 n + 1 ) , B ( y 2 n + 1 , x 2 n + 1 ) , Q ( y 2 n + 1 ) ) , S b ( A ( a , b ) , A ( a , b ) , Q ( x 2 n + 1 ) ) S b ( B ( x 2 n + 1 , y 2 n + 1 ) , B ( x 2 n + 1 , y 2 n + 1 ) , P ( a ) ) 1 + S b ( P ( a ) , P ( a ) , Q ( x 2 n + 1 ) ) , S b ( A ( b , a ) , A ( b , a ) , Q ( y 2 n + 1 ) ) S b ( B ( y 2 n + 1 , x 2 n + 1 ) , B ( y 2 n + 1 , x 2 n + 1 ) , P ( b ) ) 1 + S b ( P ( b ) , P ( b ) , Q ( y 2 n + 1 ) )    lim n inf ϕ max S b ( α , α , z 2 n ) , S b ( β , β , w 2 n ) , S b ( A ( a , b ) , A ( a , b ) , α ) , S b ( A ( b , a ) , A ( b , a ) , β ) , S b ( z 2 n + 1 , z 2 n + 1 , z 2 n ) , S b ( w 2 n + 1 , w 2 n + 1 , w 2 n ) , S b ( A ( a , b ) , A ( a , b ) , Q ( x 2 n + 1 ) ) S b ( z 2 n + 1 , z 2 n + 1 , α ) 1 + S b ( α , α , Q ( x 2 n + 1 ) ) , S b ( A ( b , a ) , A ( b , a ) , w 2 n ) S b ( w 2 n + 1 , w 2 n + 1 , β ) 1 + S b ( β , β , Q ( y 2 n + 1 ) )    = ϕ max 0 , 0 , S b ( A ( a , b ) , A ( a , b ) , α ) , S b ( A ( b , a ) , A ( b , a ) , β ) , 0 , 0 , 0 , 0    = ϕ max S b ( A ( a , b ) , A ( a , b ) , α ) , S b ( A ( b , a ) , A ( b , a ) , β ) .
Similarly,
1 2 b S b ( A ( b , a ) , A ( b , a ) , β ) ϕ max S b ( A ( a , b ) , A ( a , b ) , α ) , S b ( A ( b , a ) , A ( b , a ) , β ) .
Thus,
1 2 b max S b ( A ( a , b ) , A ( a , b ) , α ) , S b ( A ( b , a ) , A ( b , a ) , β ) ϕ max S b ( A ( a , b ) , A ( a , b ) , α ) , S b ( A ( b , a ) , A ( b , a ) , β ) .
By the definition of ϕ, it follows that A ( a , b ) = α = P ( a ) and A ( b , a ) = β = P ( b ) . Since ( A , P ) is w-compatible pair, we have that A ( α , β ) = P ( α ) and A ( β , α ) = P ( β ) .
From Equation (4) and Lemma 3, we have
1 2 b S b ( A ( α , β ) , A ( α , β ) , α ) lim n sup 2 b 5 S b ( A ( α , β ) , A ( α , β ) , B ( x 2 n + 1 , y 2 n + 1 ) ) lim n sup ϕ max S b ( P ( α ) , P ( α ) , Q ( x 2 n + 1 ) ) , S b ( P ( β ) , P ( β ) , Q ( y 2 n + 1 ) ) , S b ( A ( α , β ) , A ( α , β ) , P ( α ) ) , S b ( A ( β , α ) , A ( β , α ) , P ( β ) ) , S b ( B ( x 2 n + 1 , y 2 n + 1 ) , B ( x 2 n + 1 , y 2 n + 1 ) , Q ( x 2 n + 1 ) ) , S b ( B ( y 2 n + 1 , x 2 n + 1 ) , B ( y 2 n + 1 , x 2 n + 1 ) , Q ( y 2 n + 1 ) ) , S b ( A ( α , β ) , A ( α , β ) , Q ( x 2 n + 1 ) ) S b ( B ( x 2 n + 1 , y 2 n + 1 ) , B ( x 2 n + 1 , y 2 n + 1 ) , P ( α ) ) 1 + S b ( P ( α ) , P ( α ) , Q ( x 2 n + 1 ) ) , S b ( A ( β , α ) , A ( β , α ) , Q ( y 2 n + 1 ) ) S b ( B ( y 2 n + 1 , x 2 n + 1 ) , B ( y 2 n + 1 , x 2 n + 1 ) , P ( β ) ) 1 + S b ( P ( β ) , P ( β ) , Q ( y 2 n + 1 ) ) = lim n sup ϕ max S b ( A ( α , β ) , A ( α , β ) , z 2 n ) , S b ( A ( β , α ) , A ( β , α ) , w 2 n ) , 0 , 0 , S b ( z 2 n + 1 , z 2 n + 1 , z 2 n ) , S b ( w 2 n + 1 , w 2 n + 1 , w 2 n ) , S b ( A ( α , β ) , A ( α , β ) , z 2 n ) S b ( z 2 n + 1 , z 2 n + 1 , A ( α , β ) ) 1 + S b ( A ( α , β ) , A ( α , β ) , z 2 n ) , S b ( A ( β , α ) , A ( β , α ) , w 2 n ) S b ( w 2 n + 1 , w 2 n + 1 , A ( β , α ) ) 1 + S b ( A ( β , α ) , A ( β , α ) , w 2 n ) lim n sup ϕ max S b ( A ( α , β ) , A ( α , β ) , z 2 n ) , S b ( A ( β , α ) , A ( β , α ) , w 2 n ) , S b ( z 2 n + 1 , z 2 n + 1 , z 2 n ) , S b ( w 2 n + 1 , w 2 n + 1 , w 2 n ) , S b ( z 2 n + 1 , z 2 n + 1 , A ( α , β ) ) , S b ( w 2 n + 1 , w 2 n + 1 , A ( β , α ) ) ϕ max 2 b S b ( A ( α , β ) , A ( α , β ) , α ) , 2 b S b ( A ( β , α ) , A ( β , α ) , β ) , 0 , 0 , b 2 S b ( α , α , A ( α , β ) ) , b 2 S b ( β , β , A ( β , α ) ) ϕ 2 b 2 max S b ( A ( α , β ) , A ( α , β ) , α ) , S b ( A ( β , α ) , A ( β , α ) , β ) .
Similarly,
1 2 b S b ( A ( β , α ) , A ( β , α ) , β ) ϕ 2 b 2 max S b ( A ( α , β ) , A ( α , β ) , α ) , S b ( A ( β , α ) , A ( β , α ) , β ) .
Thus,
1 2 b max S b ( A ( α , β ) , A ( α , β ) , α ) , S b ( A ( β , α ) , A ( β , α ) , β ) ϕ 2 b 2 max S b ( A ( α , β ) , A ( α , β ) , α ) , S b ( A ( β , α ) , A ( β , α ) , β ) .
By the definition of ϕ, it follows that A ( α , β ) = α = P ( α ) and A ( β , α ) = β = P ( β ) .
Therefore, ( α , β ) is a common coupled fixed point of A and P.
Since A ( X × X ) Q ( X ) , there exist x and y in X such that A ( α , β ) = α = Q ( x ) and A ( β , α ) = β = Q ( y ) .
From Equation (4), we have
S b ( α , α , B ( x , y ) ) = S b ( A ( α , β ) , A ( α , β ) , B ( x , y ) ) 2 b 5 S b ( A ( α , β ) , A ( α , β ) , B ( x , y ) ) ϕ max S b ( P ( α ) , P ( α ) , Q ( x ) ) , S b ( P ( β ) , P ( β ) , Q ( y ) ) , S b ( A ( α , β ) , A ( α , β ) , P ( α ) ) , S b ( A ( β , α ) , A ( β , α ) , P ( β ) ) , S b ( B ( x , y ) , B ( x , y ) , Q ( x ) ) , S b ( B ( y , x ) , B ( y , x ) , Q ( y ) ) , S b ( A ( α , β ) , A ( α , β ) , Q ( x ) ) S b ( B ( x , y ) , B ( x , y ) , P ( α ) ) 1 + S b ( P ( α ) , P ( α ) , Q ( x ) ) , S b ( A ( β , α ) , A ( β , α ) , Q ( y ) ) S b ( B ( y , x ) , B ( y , x ) , P ( β ) ) 1 + S b ( P ( β ) , P ( β ) , Q ( y ) ) = ϕ max 0 , 0 , 0 , 0 , S b ( B ( x , y ) , B ( x , y ) , α ) , S b ( B ( y , x ) , B ( y , x ) , β ) , 0 , 0 ϕ b max S b ( α , α , B ( x , y ) ) , S b ( β , β , B ( y , x ) ) .
Similarly,
S b ( β , β , B ( y , x ) ) ϕ b max S b ( α , α , B ( x , y ) ) , S b ( β , β , B ( y , x ) ) .
Thus,
max S b ( α , α , B ( x , y ) ) , S b ( β , β , B ( y , x ) ) ϕ b max S b ( α , α , B ( x , y ) ) , S b ( β , β , B ( y , x ) ) .
It follows that B ( x , y ) = α = Q ( x ) and B ( y , x ) = β = Q ( y ) .
Since ( B , Q ) is w-compatible pair, we have B ( α , β ) = Q ( α ) and B ( β , α ) = Q ( β ) .
From Equation (4), we have
S b ( α , α , B ( α , β ) ) = S b ( A ( α , β ) , A ( α , β ) , B ( α , β ) ) 2 b 5 S b ( A ( α , β ) , A ( α , β ) , B ( α , β ) ) ϕ max S b ( P ( α ) , P ( α ) , Q ( α ) ) , S b ( P ( β ) , P ( β ) , Q ( β ) ) , S b ( A ( α , β ) , A ( α , β ) , P ( α ) ) , S b ( A ( β , α ) , A ( β , α ) , P ( β ) ) , S b ( B ( α , β ) , B ( α , β ) , Q ( α ) ) , S b ( B ( β , α ) , B ( β , α ) , Q ( β ) ) , S b ( A ( α , β ) , A ( α , β ) , Q ( α ) ) S b ( B ( α , β ) , B ( α , β ) , P ( α ) ) 1 + S b ( P ( α ) , P ( α ) , Q ( α ) ) , S b ( A ( β , α ) , A ( β , α ) , Q ( β ) ) S b ( B ( β , α ) , B ( β , α ) , P ( β ) ) 1 + S b ( P ( β ) , P ( β ) , Q ( β ) ) = ϕ max S b ( α , α , B ( α , β ) ) , S b ( β , β , B ( β , α ) ) , S b ( B ( α , β ) , B ( α , β ) , α ) , S b ( B ( β , α ) , B ( β , α ) , β ) ϕ b max S b ( α , α , B ( α , β ) ) , S b ( β , β , B ( β , α ) ) .
Similarly,
S b ( β , β , B ( β , α ) ) ϕ b max S b ( α , α , B ( α , β ) ) , S b ( β , β , B ( β , α ) ) .
Thus,
max S b ( α , α , B ( α , β ) ) , S b ( β , β , B ( β , α ) ) ϕ b max S b ( α , α , B ( α , β ) ) , S b ( β , β , B ( β , α ) ) .
It follows that B ( α , β ) = α = Q ( α ) and B ( β , α ) = β = Q ( β ) .
Therefore, ( α , β ) is a common coupled fixed point of A , B , P and Q.
To prove uniqueness, let us take that ( α 1 , β 1 ) is another common coupled fixed point of A , B , P and Q.
From Equation (4), we have
S b ( α , α , α 1 ) 2 b 5 S b ( α , α , α 1 ) = 2 b 5 S b ( A ( α , β ) , A ( α , β ) , B ( α 1 , β 1 ) ) ϕ max S b ( α , α , α 1 ) , S b ( β , β , β 1 ) , S b ( α , α , α ) , S b ( β , β , β ) , S b ( α 1 , α 1 , α 1 ) , S b ( β 1 , β 1 , β 1 ) , S b ( α , α , α 1 ) S b ( α 1 , α 1 , α ) 1 + S b ( α , α , α 1 ) , S b ( β , β , β 1 ) S b ( β 1 , β 1 , β ) 1 + S b ( β , β , β 1 ) ϕ ( b max { S b ( α , α , α 1 ) , S b ( β , β , β 1 ) } ) .
Similarly,
S b ( β , β , β 1 ) ϕ ( max { b S b ( α , α , α 1 ) , b S b ( β , β , β 1 ) } ) .
Thus,
max S b ( α , α , α 1 ) , S b ( β , β , β 1 ) ϕ b max S b ( α , α , α 1 ) , S b ( β , β , β 1 ) .
It follows that α = α 1 and β = β 1 . Hence, ( α , β ) is a unique common coupled fixed point of A , B , P and Q.
 □
Now, we give one example which support our main theoretical result.
Example 2.
Let X = [ 0 , 1 ] and let S b : X × X × X R + be defined by S b ( x , y , z ) = ( | y + z 2 x | + | y z | ) 2 . Then, S b is a S b -metric space with b = 4 . Define ϕ : R + R + by ϕ ( t ) = t 4 6 , A , B : X × X X and P , Q : X X by A ( x , y ) = x 2 + y 2 4 8 , B ( x , y ) = x 2 + y 2 4 9 , P ( x ) = x 2 4 and Q ( x ) = x 2 16 , respectively. Then, we have
2 b 5 S b ( A ( x , y ) , A ( x , y ) , B ( u , v ) ) = 2 4 5 ( | A ( x , y ) + B ( u , v ) 2 A ( x , y ) | + | A ( x , y ) B ( u , v ) | ) 2 = 2 4 5 ( 2 | A ( x , y ) B ( u , v ) | ) 2 = 2 4 6 ( | A ( x , y ) B ( u , v ) | ) 2 = 2 ( 4 6 ) x 2 + y 2 4 8 u 2 + v 2 4 9 2 = 2 ( 4 6 ) 4 x 2 u 2 4 9 + 4 y 2 v 2 4 9 2 = 2 4 6 4 6 2 1 4 4 x 2 u 2 16 + 4 y 2 v 2 16 2 2 4 4 6 1 2 4 x 2 u 2 16 + 4 y 2 v 2 16 2 2 4 7 max 4 x 2 u 2 16 , 4 y 2 v 2 16 2 2 ( 4 7 ) 4 max 4 4 x 2 u 2 16 , 4 4 y 2 v 2 16 2 = 1 2 ( 4 7 ) max S b ( P ( x ) , P ( x ) , Q ( u ) ) , S b ( P ( y ) , P ( y ) , Q ( v ) ) 1 2 ( 4 7 ) max S b ( P ( x ) , P ( x ) , Q ( u ) ) , S b ( P ( y ) , P ( y ) , Q ( v ) ) , S b ( A ( x , y ) , A ( x , y ) , P ( x ) ) , S b ( A ( y , x ) , A ( y , x ) , P ( y ) ) , S b ( B ( u , v ) , B ( u , v ) , Q ( u ) ) , S b ( B ( v , u ) , B ( v , u ) , Q ( v ) ) , S b ( A ( x , y ) , A ( x , y ) , Q ( u ) ) S b ( B ( u , v ) , B ( u , v ) , P ( x ) ) 1 + S b ( P ( x ) , P ( x ) , Q ( u ) ) , S b ( A ( y , x ) , A ( y , x ) , Q ( v ) ) S b ( B ( v , u ) , B ( v , u ) , P ( y ) ) 1 + S b ( P ( y ) , P ( y ) , Q ( v ) ) < ϕ max S b ( P ( x ) , P ( x ) , Q ( u ) ) , S b ( P ( y ) , P ( y ) , Q ( v ) ) , S b ( A ( x , y ) , A ( x , y ) , P ( x ) ) , S b ( A ( y , x ) , A ( y , x ) , P ( y ) ) , S b ( B ( u , v ) , B ( u , v ) , Q ( u ) ) , S b ( B ( v , u ) , B ( v , u ) , Q ( v ) ) , S b ( A ( x , y ) , A ( x , y ) , Q ( u ) ) S b ( B ( u , v ) , B ( u , v ) , P ( x ) ) 1 + S b ( P ( x ) , P ( x ) , Q ( u ) ) , S b ( A ( y , x ) , A ( y , x ) , Q ( v ) ) S b ( B ( v , u ) , B ( v , u ) , P ( y ) ) 1 + S b ( P ( y ) , P ( y ) , Q ( v ) ) .
It is clear that all conditions of Theorem 1 are satisfied and ( 0 , 0 ) is a unique common coupled fixed point of A , B , P and Q.
Putting A = B = P = Q in Theorem 1, we obtain the next important result on unique fixed point.
Theorem 2.
Let ( X , S b ) be a complete S b -metric space. Suppose that A : X × X X satisfies condition
2 b 5 S b ( A ( x , y ) , A ( x , y ) , A ( u , v ) ) ϕ max S b ( x , x , u ) , S b ( y , y , v ) , S b ( A ( x , y ) , A ( x , y ) , x ) , S b ( A ( y , x ) , A ( y , x ) , y ) , S b ( A ( u , v ) , A ( u , v ) , u ) , S b ( A ( v , u ) , A ( v , u ) , v ) , S b ( A ( x , y ) , A ( x , y ) , u ) S b ( B ( u , v ) , B ( u , v ) , x ) 1 + S b ( x , x , u ) , S b ( A ( y , x ) , A ( y , x ) , v ) S b ( B ( v , u ) , B ( v , u ) , y ) 1 + S b ( y , y , v )
for all x , y , u , v X , ϕ Φ . Then, A has a unique coupled fixed point in X × X .

3. Application

In this section, we study the existence of a unique solution to an initial value problem, as an application to Theorem 2. Consider the initial value problem:
x 1 ( t ) = f ( t , x ( t ) , x ( t ) ) , t I = [ 0 , 1 ] , x ( 0 ) = x 0
where f : I × x 0 4 , × x 0 4 , x 0 4 , and x 0 R .
Theorem 3.
Consider the initial value problem in Equation (10) with f C I × x 0 4 , × x 0 4 , and
0 t f ( s , x ( s ) , y ( s ) ) d s = 1 5 min 0 t f ( s , x ( s ) , x ( s ) ) d s , 0 t f ( s , y ( s ) , y ( s ) ) d s .
Then, there exists a unique solution in C I × x 0 4 , × x 0 4 , for the initial value problem in Equation (10).
Proof of Theorem.
The integral equation corresponding to the initial value problem in Equation (10) is
x ( t ) = x 0 + 0 t f ( s , x ( s ) , x ( s ) ) d s .
Let X = C I × x 0 4 , × x 0 4 , and let S ( x , y , z ) = ( | y + z 2 x | + | y z | ) 2 f o r x , y X . Define ϕ : [ 0 , ) [ 0 , ) by ϕ ( t ) = 4 t 5 and A : X × X X by
A ( x , y ) ( t ) = x 0 + 0 t f ( s , x ( s ) , y ( s ) ) d s .
Now, we have
S A x , y t , A x , y t , A u , v t     = A ( x , y ) ( t ) + A ( u , v ) ( t ) 2 A ( x , y ) ( t ) + A ( x , y ) ( t ) A ( u , v ) ( t ) 2 = 4 A ( x , y ) ( t ) A ( u , v ) ( t ) 2 = 4 0 t f ( s , x ( s ) , y ( s ) ) d s 0 t f ( s , u ( s ) , v ( s ) ) d s 2 = 4 1 5 min 0 t f ( s , x ( s ) , x ( s ) ) d s , 0 t f ( s , y ( s ) , y ( s ) ) d s 1 5 min 0 t f ( s , u ( s ) , u ( s ) ) d s , 0 t f ( s , v ( s ) , v ( s ) ) d s 2 4 5 max 0 t f ( s , x ( s ) , x ( s ) ) d s 0 t f ( s , u ( s ) , u ( s ) ) d s , 0 t f ( s , y ( s ) , y ( s ) ) d s 0 t f ( s , v ( s ) , v ( s ) ) d s 2 = 4 5 max 0 t f ( s , x ( s ) , x ( s ) ) d s 0 t f ( s , u ( s ) , u ( s ) ) d s 2 , 0 t f ( s , y ( s ) , y ( s ) ) d s 0 t f ( s , v ( s ) , v ( s ) ) d s 2 = 1 5 max 4 x ( t ) u ( t ) 2 , 4 y ( t ) v ( t ) 2 = 1 5 max S ( x , x , u ) , S ( y , y , v ) ϕ ( M ( x , u , y , v ) ) .
Hence, from Theorem 2, we conclude that A has a unique coupled fixed point in X.  □

Author Contributions

All authors contributed equally to this paper. All authors have read and approved the final manuscript.

Funding

This research received no external funding.

Acknowledgments

The first author is thankful to the Ministry of Science and Environmental Protection of Serbia TR35030.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Sedghi, S.; Gholidahneh, A.; Došenović, T.; Esfahani, J.; Radenović, S. Common fixed point of four maps in Sb-metric spaces. J. Linear Topol. Algebra 2016, 5, 93–104. [Google Scholar]
  2. Gholidahneh, A.; Sedghi, S.; Došenović, T.; Radenović, S. Ordered S-metric Spaces and Coupled Common Fixed Point Theorems of Integral Type Contraction. Math. Interdiscip. Res. 2017, 2, 71–84. [Google Scholar]
  3. Sedghi, S.; Altun, I.; Shobe, N.; Salahshour, M. Some properties of S-metric space and fixed point results. Kyungpook Math. J. 2014, 54, 113–122. [Google Scholar] [CrossRef]
  4. Sedghi, S.; Rezaee, M.M.; Došenović, T.; Radenović, S. Common fixed point theorems for contractive mappings satisfying Φ-maps in S-metric spaces. Acta Univ. Sapientiae Math. 2016, 8, 298–311. [Google Scholar] [CrossRef]
  5. Sedghi, S.; Shobe, N.; Došenović, T. Fixed point results in S-metric spaces. Nonlinear Funct. Anal. Appl. 2015, 20, 55–67. [Google Scholar]
  6. Zhou, M.; Liu, X.; Radenović, S. S-γ-ϕ-φ-contractive type mappings in S-metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 1613–1639. [Google Scholar] [CrossRef]
  7. Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
  8. Czerwik, S. Contraction mapping in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
  9. Chandok, S.; Jovanović, M.; Radenović, S. On some recent fixed points results for hybrid rational Geraghty type contractive mappings in ordered b-metric spaces. Mil. Tech. Cour. 2017, 65, 331–345. [Google Scholar]
  10. Isik, H.; Radenović, S. A new version of coupled fixed point results in ordered metric spaces with applications. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 131–138. [Google Scholar]
  11. Radenović, S.; Došenović, T.; Osturkć, V.; Dolićanin, Ć. A note on the paper: “Nonlinear integral equations with new admisibility types in b-metric spaces”. J. Fixed Point Theory Appl. 2017, 19, 2287–2295. [Google Scholar]
  12. Rohen, Y.; Došenović, T.; Radenović, S. A note on the paper “A fixed point theorems in Sb-metric spaces”. Filomat 2017, 31, 3335–3346. [Google Scholar] [CrossRef]
  13. Gnana, B.T.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. Theory Methods Appl. 2006, 65, 1379–1393. [Google Scholar]
  14. Sedghi, S.; Gholidahneh, A.; Rao, K.P.R. Common fixed point of two R-weakly commuting mappings in Sb-metric spaces. Math. Sci. Lett. 2017, 6, 249–253. [Google Scholar] [CrossRef]
  15. Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. Theory Methods Appl. 2009, 70, 4341–4349. [Google Scholar] [CrossRef]
  16. Abbas, M.; Khan, M.A.; Radenović, S. Common coupled fixed point theorems in cone metric spaces for w-compatible mappings. Appl. Math. Comput. 2010, 217, 195–202. [Google Scholar] [CrossRef]
  17. De La Sen, M.; Agarwal, R.P. Fixed point-type results for a class of extended cyclic self-mappings under three general weak contractive conditions of rational type. Fixed Point Theory Appl. 2011, 2011. [Google Scholar] [CrossRef]
  18. Harjani, J.; López, B.; Sadarangani, K. A Fixed Point Theorem for Mappings Satisfying a Contractive Condition of Rational Type on a Partially Ordered Metric Space. Abstr. Appl. Anal. 2010, 2010, 190701. [Google Scholar] [CrossRef]
  19. Radenović, S.; Rao, K.P.R.; Siva Parvathi, K.V.; Došenović, T. A Suzuki type common tripled fixed point theorem for a hybrid pair of mappings. Miskolc Math. Notes 2016, 17, 533–551. [Google Scholar]

Share and Cite

MDPI and ACS Style

Vujaković, J.; Kishore, G.N.V.; Rao, K.P.R.; Radenović, S.; Sadik, S. Existence and Unique Coupled Solution in Sb-Metric Spaces by Rational Contraction with Application. Mathematics 2019, 7, 313. https://doi.org/10.3390/math7040313

AMA Style

Vujaković J, Kishore GNV, Rao KPR, Radenović S, Sadik S. Existence and Unique Coupled Solution in Sb-Metric Spaces by Rational Contraction with Application. Mathematics. 2019; 7(4):313. https://doi.org/10.3390/math7040313

Chicago/Turabian Style

Vujaković, Jelena, Gajula Naveen Venkata Kishore, Konduru Pandu Ranga Rao, Stojan Radenović, and Shaik Sadik. 2019. "Existence and Unique Coupled Solution in Sb-Metric Spaces by Rational Contraction with Application" Mathematics 7, no. 4: 313. https://doi.org/10.3390/math7040313

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop